题目的提出 中国大唐团体公司陡河电厂#2发电机组(125MW)属于调峰机组,机组运行时基本带70-80%负荷,两台吸风机采用进口挡板调节。为了保证电机的安全" />
工程案例展示
联系我们

锋速达通风降温系统

电 话:0579-81328720> 传 真:0579-81328720
联系人
售前咨询:13388660553
技术指导:18858318765
售后服务:15068216608
地址:上海 金华 嘉兴 襄阳

厂房通风_国产高压变频器在陡河发电厂吸风机上的应用工业自动化


国产高压变频器在陡河发电厂吸风机上的应用
 ,厂房降温风机; ,玻璃钢负压风机; ,大型屋顶风机; 中国大唐团体公司陡河电厂 郑宝珍 王子强

按此在新窗口浏览图片
题目的提出
  中国大唐团体公司陡河电厂#2发电机组(125MW)属于调峰机组,机组运行时基本带70-80%负荷,两台吸风机采用进口挡板调节。为了保证电机的安全稳定运行,选用的风机电机的备用容量较大。机组满负荷运行时,吸风机进口挡板开度约60%,机组调峰时,风机进口挡板开度约40%左右,能量损失大,风机效率低。为了进一步适应厂网分开、竞价上网的电力体制,节约能源,降低厂用电率,保护环境,简化运行方式,减少转动设备的磨损等,我公司决定在陡河电厂、下花园电厂及张家口电厂对部分风机、水泵采用高压变频器调速装置,我公司在国际上公然招标采购高压变频器。北京利德华福电气技术有限公司为国内唯一中标单位,并一举中标8台高压变频器。其中陡河电厂#2炉2台吸风机电机上分别加装一套北京利德华福电气技术有限公司生产的6 kV/1000 kW高压变频器装置。
1、HARSVERT-A06/105型高压变频装置原理
  变频装置采用多电平串联技术,6KV系统结构见图1,由移相变压器、功率单元和控制器组成。6KV系列有21个功率单元,每7个功率单元串联构成一相。
  每个功率单元结构以及电气性能完全一致,可以互换,其电路结构见图2,为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆变桥进行正弦PWM控制,可得到如图3所示的波形。

按此在新窗口浏览图片

按此在新窗口浏览图片
  每个功率单元结构上完全一致,可以互换,其电路结构见图2,为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆变桥进行正弦PWM控制,可得到如图3所示的波形。

按此在新窗口浏览图片
  输进侧由移相变压器给每个单元供电,移相变压器的副边绕组分为三组,构成42脉冲整流方式;这种多级移相叠加的整流方式可以大大改善网侧的电流波形,使其负载下的网侧功率因数接近1。
  另外,由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,每个功率单元等效为一台单相低压变频器。
  输出侧由每个单元的U、V输出端子相互串接成星型接法直接给高压电机供电,通过对每个单元的PWM波形进行重组,可得到如图4所示的门路正弦PWM波形。这种波形正弦度好,dv/dt小,可减少对电缆和电机的尽缘损坏,无须输出滤波器就可以使输出电缆长度很长,电机不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗大大减少,消除了由此引起的机械振动,减小了轴承和叶片的机械应力。
  当某一个单元出现故障时,通过使图2中的软开关节点K导通,可将此单元旁路出系统而不影响其他单元的运行,变频器可持续降额运行,可减少很多场合下停机造成的损失。

按此在新窗口浏览图片
2、变频改造方案简介
  #2炉引风机是两台双侧布置,目前其引风机的出力调节由人工调节挡板来实现。由于引风机设计时冗余功率较大,加上风量控制采用档风板引起的阻力损耗,造成厂用电率高,影响机组的经济运行。
电动机参数         引风机参数
型号:Y1000-8        型号: G4-73-11-28D
额定功率:1000kW     额定风量:455000m3/h
额定电压:6kV       额定风压: 6460Pa
额定电流:119A       风机转速: 742rpm
额定频率:50Hz
额定转速:743r/min
  为了充分保证系统的可靠性,为变频器同时加装工频旁路装置,变频器异常时,变频器停止运行,电机可以直接手动切换到工频下运行。工频旁路由3个高压隔离开关QS1、QS2和QS3组成(见图,其中QF为甲方原有高压开关)。要求QS2不能与QS3同时闭合,在机械上实现互锁。变频运行时,QS1和QS2闭合,QS3断开;工频运行时,QS3闭合,QS1和QS2断开。
  为了实现变频器故障的保护,变频器对6KV开关QF进行联锁,一旦变频器故障,变频器跳开QF,要求甲方对QF的合分闸电路进行适当改造。工频旁路时,变频器应答应QF合闸,撤消对QF的跳闸信号,使电性能正常通过QF合闸工频启动。

按此在新窗口浏览图片
3、变频装置调试数据对比
中国电力科学研究院对相关参数的丈量结果如下

按此在新窗口浏览图片

按此在新窗口浏览图片
图6 机组负荷90MW时变频器输出电压(波形较电流差)电流波形

按此在新窗口浏览图片
图7 变频启动时变频器输出电压(上)和电流(下)波形
  测试结果表明,72%负荷时节能率为59%,满负荷时节能率也高达46%。同时,电机变频启动时,启动电流平稳上升,电机启动非常平稳。
4、变频改造后的效益计算
1) 全年满负荷时,投进2台变频器后,估算年节电量为:520kW*5500h=2860000 kWh
  年至少节省电费:2860000 kWh*0.326元/kW.h=93.2万元
2) 全年72%负荷运行时,投进2台变频器后,估算年节电量为:571kW*5500h=3140500 kWh
  年至少节省电费:3140500 kWh*0.326元/kW.h=102.4万元
  可见,在满负荷全年运行或者72%负荷全年运行情况下,投进2台北京利德华福电气技术有限公司生产的国产高压变频器后,我公司全年节约电费均可达100万元左右。另外,由于北京利德华福电气技术有限公司系列变频器功率因数可达0.95以上,大于电机功率因数0.85,减少大量无功。并且实现电机软启动,可避免因大电流启动冲击造成对电机尽缘的影响,减少电机维护量,节约检验维护用度,同时电机寿命大幅度延长。
5、结束语
高压变频装置由于其节能效果明显,采用变频调速后,实现了电机的软启动,延长电机的寿命,引风机挡板全开,也减少了风道的振动与磨损。总之,以北京利德华福公司为代表生产的国产高压变频器的可靠运行性能及良好的节能效果为我公司创造了巨大的经济效益和社会效益,值得大力推荐和应用。

北极星风力发电网讯 :? 穆格公司下属工业集团近日宣布推出一项新型电动变桨系统。该新系统提供更高的性能和可靠性、额外的安全性且维护成本低,能够帮助风机制造商与操作人员应对关键技术挑战。穆格风机变桨系统配置了由穆格新推出的、具有高性价比的电磁式交流同步无刷伺服电动机。这款电动机采用了创新设计,专为满足陆上和海上风机的独特要求而量身打造。此外,该变桨系统也包括久经验证的变桨伺服驱动器及后备电源系统。 变桨控制系统负责对叶片进行精确的定位,使风机能够以最佳速度运行,从而确保最高可用性和安全性。考虑到风机运行环境极端恶劣,该变桨系统及其零部件面临着陆上及海上的各种环境挑战,包括偏低且不稳定的风速以及从零下30° C到零上50° C的运行环境温度。变桨系统的各项部件――尤其是电机,在整个温度范围内均需要满足其性能要求。 “在系统性能、可靠性、安全性与成本等各项参数之间取得完美平衡是风力发电机制造商和操作人员面临的关键挑战。与传统的直流变桨系统相比,交流无刷技术无疑是一项具有低维护成本的高性能系统。” 穆格风能业务开发经理Mauro Gnecco说。 相关阅读:


动叶可调轴流式风机叶片断裂的原因分析
     关键字:引风机叶片  断裂  防止对策       

  大型轴流引风机是火力发电厂的主要辅机,它的安全可靠性直接关系到电厂的安全经济运行。广州珠江电厂(4×300 MW)国产汽轮发电机组的每台锅炉蒸发量为1 021 t/h,配有ASN-2880/1600型动叶可调轴流式引风机。1993年4月4台机组相继投产以来,多次发生引风机叶片断裂事故,给电厂的安全生产和经济运行造成了极大的威胁和损失,为此,就引风机叶片断裂原因进行分析。

  1引风机设备概况
  ASN-2880/1600型轴流式引风机的作用是将锅炉炉膛中燃烧所产生的烟气吸出,通过烟囱排至大气。每台锅炉配备2台ASN-2880/1600型引风机,其叶轮直径为2 880 mm,轮毂直径为1 600mm,设计叶片材料是ZL402铸铝合金,牌号为ZA1Zn6 Mg,叶片头部设有可更换的不锈钢(1Cr18Ni9Ti)耐磨鼻,叶片表面镀硬铬,用于防磨。动叶角度的调节是由风机外部的伺服马达带动调节驱动装置,经调节拉叉使液压机构动作,推动轮毂内的调节盘做轴向移动来传动叶片。

  2叶片断裂损坏的主要情况


  从1994年2月1日1号炉A引风机在运行中发生叶片全断开始,至2001年6月止,珠江电厂先后共发生11次引风机叶片全断事故,累计停机时间达1 317 h;9次停机检查,发现叶片根部6个螺栓的连接筋有裂纹或出现螺栓松动、断裂情况,累计停机时间114 h。

  2.1引风机叶片全断情况

  在全厂引风机叶片全断的情况中,1号炉A引风机共占了8次(其中1997年以前7次,1998年1次),3号炉B引风机占1次,4号炉A引风机占2次,2号炉引风机从未发现过断叶片事故。叶片全断前的运行工况中,引风机轴振值有的在30~50μm之间;引风机轴振值有的在正常范围;有的还发生在机组变负荷工况下,引风机振动突变,发出巨响并跳机。

  引风机叶片全断的主要特征是:26片动叶全部折断,部份平衡锤断裂;轴承箱地脚螺栓断裂,严重的有调节油缸、旋转油封损坏,主体风筒和风箱导叶变形。



  2.3叶片裂纹损坏情况



  在停机检查中,发现4号炉A、B引风机占了6次之多,2~3号炉B引风机各占一次。停机前,风机轴振值在50~75μm之间,只有一次轴振是正常的,叶片断裂主要发生在叶片根部底盘,并贯串3个螺丝裂开。



  3叶片断裂的原因分析



  3.1叶片材料存在质量问题



  叶片材料存在质量问题是叶片断裂的主要原因,我们可以从以下几个方面的分析可知。



  3.1.1叶片化学成分分析



  叶片化学成分分析见表1。



  从表1可知,断裂叶片合金元素Zn的质量分数超过了国标规定的技术条件上限的2.03%。铸铝合金ZL402的主要特点有自硬倾向,这种特性可避免工件因淬火产生较大内应力而引起开裂和变形问题,叶片在自然状态使用,可保证尺寸稳定,但是,随着锌质量分数的增加,合金的百分比上升,铸造性能下降,从而造成热裂、针孔和疏松的倾向增大,导致合金的塑性急剧下降,这是引风机叶片极易断裂的原因之一。

3.1.2叶片机械性能分析



  从叶片的拉伸、冲击和硬度试验结果看,断裂叶片材料的延伸率δ5仅为1.5%~2.0%,比国标GB1173?86规定的δ5≥4%小了1/2以上,其冲击能和冲击韧性低,均为沿晶脆性断口,叶盘、叶型底部、叶型顶部的硬度(平均)分别为HB110,HB108,HB106,符合国标规定硬度不小于HB65的要求,但叶型的硬度比叶盘的硬度低,这与该类型铸件的壁厚越薄则硬度越高的规律相反。因此,叶片延伸率低于技术条件要求也是叶片断裂的原因之一。



  3.1.3叶片金相检验分析


相关阅读:  
?动叶可调轴流式风机叶片断裂的
?动叶可调双级轴流风机的现场动平衡
?动叶可调轴流一次风机失速分析及预防措施
?轴流压缩机首级叶片疲劳断裂的原因分析
?轴流式风机的基本原理
?动叶可调风机轮毂轴孔的加工
?催化裂化轴流压缩机叶片疲劳断裂原因分析
?动叶可调轴流通风机的失速与喘振分析及改进措施
?轴流式一次风机失速原因分析及预防措施
?300MW锅炉引风机叶片断裂原因分析及对策
?ML系列动叶可调轴流风机性能参数表
?求动叶可调双级轴流风机的现场动平衡??
?轴流风机的动叶卡涩产生的原因
?轴流式风机的结构解析
 
 
 

收录时间:2011年01月07日 18:16:30 来源:ccen 作者:

 离心风机是电厂的主要辅助设备之一,其耗电量约占电厂发电量的1.5%~3.0%,由于锅炉排放的烟气或制粉系统气流中含有一定数量的尘粒,因而普遍存在引风机、排粉机磨损问题。其他还有很多场合,使风机运行在含有固体颗粒的环境中。固体颗粒随着气流进入叶轮,会引起磨损、沉积等问题,进而影响机械性能,缩短寿命,甚至引发重大事故。因此,这类叶轮机械的磨损核沉积是工程界亟待解决的问题。

  据有关部门统计,1990~1992年,我国100MW及以上机组中,因电站风机故障造成的非计划停运和非计划降低出力造成的电量损失,在机组各类部件中,按等效非计划停运小时占机组总等效非计划停运小时的百分比大小排列的顺序、大小及平均年损失电量分别是:1990年:(1)200MW机组(统计台数101台)锅炉送风机和引风机分别排列第6位和第7位,分别占总等效停运小时的5.09%和4.94%;平均每台损失电量8032.89MW·h和7794.61MW·h;(2)300MW机组(统计台数25台)的锅炉引风机排列第5位,占总等效停运小时的4.17%,平均每台年损失电量8948.6MW·h;(3)600MW机组(统计台数2台)锅炉引风机排列第10位,占总等效停运小时的3.17%,平均每台损失电量为35052MW·h。1991年和1992年统计的数据与此类似。由这些统计数据可见,我国大容量电站风机故障所造成的电量损失是很大的。通过对这些风机故障的分析研究表明,其中50%以上都是由于风机的磨损而造成的。

?磨损机理

?磨损现象包含着许多复杂因素,它往往是多重机理综合作用的结果。尘粒进入叶轮后与壁面相互作用,在离心流道的进口区域和整个轴向流道内,尘粒基本上是在气流的夹带及自身惯性的综合作用下,以非零攻角在碰撞壁面,然后又反弹进入流道内,这样引起的壁面材料磨损是典型的冲蚀磨损。而在离心流道的出口区域内,尘粒在流道内运动了较长的一段距离,大部分和壁面发生过多次碰撞,基本上沿着压力表面滑动或滚动,并对着壁面有一定的压力作用,这样造成的背面材料的磨损属于擦伤式尘粒磨损,尘粒在压力面附近区域的集中更加剧了尘粒磨损的危害程度。?

  凸凹不平的接触表面,因相对运动下的锉削效应或界面间分散的固体颗粒的研磨作用所导致的磨损。它对叶轮磨损的程度影响最大。在风机中固体颗粒以一定的速度与零件表面作相对运动就会引起磨粒磨损。?

 研究表明,在其它条件相同时,即使提高加工表面的加工精度等级和洁净度,使彼此贴合更好,但其磨损并不降低,反而因界面贴近,分子吸附作用显著,加重了界面的磨损,称此为吸附磨损。

 防磨措施

针对不同的磨损形式,可以将防磨措施分为以下几种。

对叶片表面进行处理?

对叶片表面可以进行渗碳、等离子堆焊、喷涂硬质合金、粘贴陶瓷片处理。这些方法的共同优点是增加了叶片表面的硬度,从而在一定程度上提高了叶片的耐磨性,但各种方法均存在各自的缺点。渗碳工艺难度大,实际渗碳时,渗碳层的部位和厚度要由叶片厚度和磨损情况以及渗碳工艺决定;堆焊时叶片变形大,而且反复焊接会导致叶面产生裂缝,易产生事故;喷涂时涂层的厚度很难确定好;粘贴陶瓷片的效果比较好,但价格高。?
   表面喷涂耐磨涂层?
 这种方法操作简单,成本低,但涂层磨损快,一次大约使用3~5个月。?
 改进叶片结构?

共有将叶片工作面加工成锯齿状、变中空叶片为实心叶片、叶片加焊防磨块等方法,这些都可以在一定程度上降低叶轮的磨损。?
前置防磨叶栅?
 在最易磨损处安装防磨叶栅后,可以阻止粒子向后盘及叶根处流动,从而将粒子的集中磨损转化为均匀磨损,提高了叶轮的耐磨性,延长了风机的使用寿命。?

改善气动设计?

合理选用风机进风口形状,设计时应保证叶轮最小入口相对速度,尽量降低通风机的转数,选择适当的叶轮流道形状,使叶片进口到出口的弧度的曲率半径由小渐大,这样能减少固体颗粒与叶片的撞击机会。
 使用高效除尘装置?

 使风机在净化的气流中,以降低磨损。??
 虽然目前风机防磨方法很多,但大多数是局部的和被动的,一种既经济又切实可行的防磨方法亟待提出。从气动设计的角度出发,通过改变粒子轨迹,从根本上降低磨损是风机防磨措施的发展方向。?


摘 要: 提出应当特别重视防范制冷系统若干漏点、爆点及其危害性。希望国家制冷行业组织技术力量攻关,强调对冷凝器等压力容器在其与水系统接触的表面上应作良好的耐用的防腐措施才能出厂。

关 键 词: 制冷系统 漏点 爆点 危害性 防范措施

制冷系统除了一些容易检查发现的漏点外,尚有若干难以检查发现的漏点与突然发生的爆点值得特别重视防范。由于这些漏点闻不到,看不见,难以检查发现,由此在不知不觉中造成制冷剂大量泄漏。这不仅造成巨大的人力物力浪费,而且由此造成制冷系统的缺少制冷剂而降低了制冷效果,甚至会使整个制冷系统完全失去制冷功能。这些闻不到看不见与难以检查发现的漏点往往发生在制冷系统的高压部位或与水系统接触的部位,其危害性极大,造成制冷剂的损失也特别严重,其中CFC与HCFC泄漏还会破环臭氧层,对全球环保造成严重危害。特别是一些容易疏忽的爆点,其危害性更大,不但造成巨大的经济损失,而且极易造成重大人员伤亡事故。应当引起我们高度重视,采取有效防范措施。


灰铸件标准:GB9434-88;平板标准:JB/T7974-1999;尺寸公差: GB6414-1999;质量公差:GB/T11351-89;铸件及平板台面硬度为 HB160-220 、平尺等其它产品为HB170-240(硬度差不超过HB40)。铸件进行退火处理,以消除内应力,530-560度炉冷。技术检验; 1、 铸造毛坯不得有砂眼、缩松、裂纹等铸造缺陷。 2、铸件要进行退火处理。 3、铸件要进行清理。 4、铸件表面要喷防锈漆(可选)。 5、未注铸造倒角半径R10。 铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造......等。而砂型铸造又可以分为粘土砂型、有机粘结剂砂型、树脂自硬砂型、消失模等等。 铸造方法选择的原则: 1 优先采用砂型铸造,主要原因是砂型铸造较之其它铸造方法成本低、生产工艺简单、生产周期短。当湿型不能满足要求时再考虑使用粘土砂表干砂型、干砂型或其它砂型。粘土湿型砂铸造的铸件重量可从几公斤直到几十公斤,而粘土干型生产的铸件可重达几十吨。 2 铸造方法应和生产批量相适应。低压铸造、压铸、离心铸造等铸造方法,因设备和模具的价格昂贵,所以只适合批量生产。 3 造型方法应适合工厂条件。 例如同样是生产大型机床床身等铸件,一般采用组芯造型法,不制作模样和砂箱,在地坑中组芯;而另外的工厂则采用砂箱造型法,制作模样。不同的企业生产条件(包括设备、场地、员工素质等)、生产习惯、所积累的经验各不一样,应该根据这些条件考虑适合做什么产品和不适合(或不能)做什么产品。 4 要兼顾铸件的精度要求和成本
 在长期的实践中我们觉得简单的维护主要体现在以下几个方面:
1)高压风机的马达直联叶轮且属于高转速,轴承需要定期添加黄油,防止轴承损坏(包括叶轮的轴承)。
2)马达的轴功率和压力是成正比关系,为防止长期极限高压力(真空)导致轴功率加大,从而电机负载过重,经常使用的是释压阀,它是一个卸荷阀,当高压风机(气环真空泵)的使用压力超过释压阀设定的压力之后,释压阀就会自动打开,把多余的压力释放掉,从而保护高压风机(气环真空泵)的马达。
3)高压风机内部的机构比较紧密,叶轮和机壳间隙很小,所以要过滤杂物和粉尘。对于杂物,一般是在进气口装上细密的过滤网,粉尘,经常使用的是过滤器。它根据不同的使用现场,往往使用不同的过滤精度的过滤滤芯,不同的滤芯有不同的维护方法和使用寿命,在订货时就需要问清楚。
4)在一些特殊的场合,还需要进行特殊的保护:比如说在密封环境中使用时,要注意通风散热;当环境温度(进气温度比较高时),更要注意通风散热,或者选择允许进风温度较高的高压风机(气环真空泵)。 



锋速达负压风机-大北农集团巨农种猪示范基地风机设备水帘设备供应商!台湾九龙湾负压风机配件供应商! 主要产品猪舍通风降温,猪棚通风降温,猪场通风降温,猪舍风机,养殖地沟风机,猪舍地沟风机,猪舍多少台风机,厂房多少台风机,车间多少台风机,猪舍什么风机好,厂房什么风机好,车间什么风机好,多少平方水帘,多大的风机,哪个型号的风机 相关的主题文章:
推荐案例