产品列表
工程案例展示
风机选型与安装
负压风机厂风机运行中常见故障原因分析及其处理可靠编码器和测速
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,它是火电厂中不可少的机械设备,主要有送风机、引风机、一次风机、密封风机和排粉机等,消耗电能约占发电厂发电量的1.5%~3.0%。在火电厂的实际运行中,风机,特别是引风机由于运行条件较恶劣,故障率较高,据有关统计资料,引风机平均每年发生故障为2次,送风机平均每年发生故障为0.4次,从而导致机组非计划停运或减负荷运行。因此,迅速判断风机运行中故障产生的原因,采取得力措施解决是发电厂连续安全运行的保障。虽然风机的故障类型繁多,原因也很复杂,但根据调查电厂实际运行中风机故障较多的是:轴承振动、轴承温度高、动叶卡涩、保护装置误动。
1 风机轴承振动超标
风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
1.1 不停炉处理叶片非工作面积灰引起风机振动
这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。
在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。经过研究,提出了一个经实际证明行之有效的处理方法。如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。这样就实现了不停炉而处理风机振动的目的。用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。
1.2 不停炉处理叶片磨损引起的振动
磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。此时处理风机振动的问题一般是在停炉后做动平衡。根据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。
1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离最近,只有200 mm多,人站在风机外面,用手可以进行内部操 作。风机正常运行的情况下手孔门关闭。
2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试加重量。
3)找完平衡后,计算应加的重量和位置,对叶轮进行焊接工作。
在实际工作中,用三点法找动平衡较为简单方便。试加重量的计算公式为
P<=250×A0×G/D(3000/n)2(g)
为了尽快找到应加的重量和位置,应根据平时的数据多总结经验。根据经验,Y4-73-11-22D的风机振动0.10 mm时不平衡重量为2 000 g;M5-29-11-18D的排粉机振动0.10 mm时不平衡重量120 g;轴流ASN2125/1250型引风机振动为0.10 mm时不平衡重量只有80 g左右。为了达到不停炉处理叶片磨损引起的振动问题的目的,平时须加强对风门挡板的维护,减少风门挡板的漏风,在单侧风机停运时能防止热风从停运的送风机处漏出以维持良好的工作环境。
1.3 空预器的腐蚀导致风机振动间断性超标
这种情况通常发生在燃油锅炉上。燃油锅炉引风机前一般没有电除尘,烟、风道较短,空预器的波纹板和定位板由于低温腐蚀,波纹板腐蚀成小薄钢片,小薄钢片随烟气一起直接打击在风机叶片上,一方面造成风机的受迫振动,另一方面一些小薄钢片镶嵌在叶片上,由于叶片的动不平衡使风机振动。这种现象是笔者在长期的实际生产中观察到的结果。处理方法是及时更换腐蚀的波纹板,采用方法防止空预器的低温腐蚀,提高排烟温度和进风温度(一般应高于60℃以避开露点),波纹板也可使用耐腐蚀的考登钢或金属搪瓷。
1.4 风道工程振动导致引风机的振动
烟、风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改变,而一般扩散筒的下部只有4个支点,如图2所示,另一边的接头石棉帆布是软接头,这样一来整个扩散筒的60%重量是悬吊受力。从图中可以看出轴承座的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在扩散筒出口端下面增加一个活支点(如图3),可升可降可移动。当机组负荷变化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况在风道较短的情况下更容易出现。
1.5 动、静部分相碰引起风机振动
在生产实际中引起动、静部分相碰的主要原因:
(1)叶轮和进风口(集流器)不在同一轴线上。
(2)运行时间长后进风口损坏、变形。
(3)叶轮松动使叶轮晃动度大。
(4)轴与轴承松动。
(5)轴承损坏。
(6)主轴弯曲。
根据不同情况采取不同的处理方法。引起风机振动的原因很多,其它如连轴器中心偏差大、基础或机座刚性不够、原动机振动引起等等,有时是多方面的原因造成的结果。实际工作中应认真总结经验,多积累数据,掌握设备的状态,摸清设备劣化的规律,出现问题就能有的放矢地采取相应措施解决。
2 轴承温度高
风机轴承温度异常升高的原因有三类:润滑不良、冷却不够、轴承异常。离心式风机轴承置于风机外,若是由于轴承疲劳磨损出现脱皮、麻坑、间隙增大引起的温度升高,一般可以通过听轴承声音和测量振动等方法来判断,如是润滑不良、冷却不够的原因则是较容易判断的。而轴流风机的轴承集中于轴承箱内,置于进气室的下方,当发生轴承温度高时,由于风机在运行,很难判断是轴承有问题还是润滑、冷却的问题。实际工作中应先从以下几个方面解决问题。
(1)加油是否恰当。应当按照定期工作的要求给轴承箱加油。轴承加油后有时也会出现温度高的情况,主要是加油过多。这时现象为温度持续不断上升,到达某点后(一般在比正常运行温度高10℃~15℃左右)就会维持不变,然后会逐渐下降。
(2)冷却风机小,冷却风量不足。引风机处的烟温在120℃~140℃,轴承箱如果没有有效的冷却,轴承温度会升高。比较简单同时又节约厂用电的解决方法是在轮毂侧轴承设置压缩空气冷却。当温度低时可以不开启压缩空气冷却,温度高时开启压缩空气冷却。
(3)确认不存在上述问题后再检查轴承箱。
3 动叶卡涩
轴流风机动叶调节是通过传动机构带动滑阀改变液压缸两侧油压差实现的。在轴流风机的运行中,有时会出现动叶调节困难或完全不能调节的现象。出现这种现象通常会认为是风机调节油工程故障和轮毂内部调节机构损坏等。但在实际中通常是另外一种原因:在风机动叶片和轮毂之间有一定的空隙以实现动叶角度的调节,但不完全燃烧造成碳垢或灰尘堵塞空隙造成动叶调节困难。动叶卡涩的现象在燃油锅炉和采用水膜除尘的锅炉比较普遍,解决的措施主要有
(1)尽量使燃油或煤燃烧充分,减少碳黑,适当提高排烟温度和进风温度,避免烟气中的硫在空预器中的结露。
(2)在叶轮进口设置蒸汽吹扫管道,当风机停机时对叶轮进行清扫,保持叶轮清洁,蒸汽压力<=0.2MPa,温度<=200℃。
(3)适时调整动叶开度,防止叶片长时间在一个开度造成结垢,风机停运后动叶应间断地在0~55°活动。
(4)经常检查动叶传动机构,适当加润滑油。
4 旋转失速和喘振
旋转失速是气流冲角达到临界值附近时,气流会离开叶片凸面,发生边界层分离从而产生大量区域的涡流造成风机风压下降的现象。喘振是由于风机处在不稳定的工作区运行出现流量、风压大幅度波动的现象。这两种不正常工况是不同的,但是它们又有一定的关系。风机在喘振时一般会产生旋转气流,但旋转失速的发生只决定于叶轮本身结构性能、气流情况等因素,与风烟道工程的容量和形状无关,喘振则风机本身与风烟道都有关系。旋转失速用失速探针来检测,喘振用U形管取样,两者都是压差信号驱动差压开关报警或跳机。但在实际运行中有两种原因使差压开关容易出现误动作:1)烟气中的灰尘堵塞失速探针的测量孔和U形管容易堵塞;2)现场条件振动大。该保护的可靠性较差。由于风机发生旋转失速和喘振时,炉膛风压和风机振动都会发生较大的变化,在风机调试时通过动叶安装角度的改变使风机正常工作点远离风机的不稳定区,随着目前风机设计制造水平的提高,可以将风机跳闸保护中喘振保护取消,改为“发讯”,当出现旋转失速或喘振信号后运行人员通过调节动叶开度使风机脱离旋转脱流区或喘振区而保持风机连续稳定运行,从而减少风机的意外停运。
5 结束语
随着中国风机制造水平的提高,风机的效率和可靠性不断提高,但风机在实际运用中故障的情况仍较多,完善工程
风力发电机不仅曝露于自然环境中,而且必须在最恶劣的条件下绝对可靠地运行。即使在运行20或30年后,人们仍然希望它们能够在任何天气中保持最佳的运行状态,提供最高的经济效益,并具有最短的停机时间。要实现这些目标,需要采用精密的具有安全和性能可靠性的传感器技术。增量式传感器和测速发电机起着主要作用,它们必须同时满足可靠性和耐用性方面的苛刻要求。陆上和海上风力发电机通常都会使用十多个能正确完成任务并耐受极其严酷的环境条件的传感器。
如同风力发电机在尺寸、性能和结构上的有所不同,对其所用传感器的要求也多种多样。如果希望在该市场取得成功,就必须考虑风机制造商和业主在结构、维护和运行方面的不同需求。堡盟广泛的产品系列融合了堡盟丰富的技术知识和多年的专业经验,能充分满足以上要求。堡盟集团运动控制产品部门可为风能行业中的各种应用提供满足当前及未来要求的合适产品(图1a、图1b)。
为了确保风力发电机实现顶级性能和最佳效率,必须根据风力、风向调节转子速度。用于监测转速的增量式传感器可直接安装在转子轮毂上或者安装在风力发电机的传动工程上,用以获取当前的转子速度,并将信息传输至主控制器。
绝对值编码器可随时提供转子位置反馈,其最大分辨率为17位,并常常采用并联增量通道来获得冗余速度反馈。更多的高性能产品还包括HDmag系列新型无轴承磁编码器,这些编码器也能精确地完成发电机反馈任务。凭借极其紧凑的结构设计,它们在安装过程中允许较大的轴向和径向容差。用于高度动态应用的无轴承编码器可直接安装在快速旋转的发电机轴上,在20年时间中需完成25,000,000,000多圈。这显然超出了球轴承的能力。最大通孔直径为740 mm的编码器直接安装在轮毂上(图2)。无轴承编码器每转产生500,000多个脉冲,凭借这一高分辨率它们可以精确采集相对较低的转子转速。
转子叶片的桨距角是风力发电机发电效率的关键。为了最大限度地利用不同风向的风力,转子叶片的迎风面必须与风向保持一致。由于在断电时绝对值编码器(图3)也能保存位置值,并在冗余发电机重新启动时作为参考循环,因此它们是位置反馈的首选产品。
用于发电机反馈的编码器
发电机转速是风力发电场运行的重要因素:首先是确保稳定的电网供电,其次是在超过最高转速极限时使风机紧急停止。实践证明,对这些应用而言,增量式编码器是一种可靠的选择。由于超速开关可作为超出速度阈值时的紧急停止触发器(图4),增量式编码器可与之配合使用,在发电场的盈利能力和运行安全方面起着关键作用。
为了最佳地利用主导风以确保风力发电场的发电效率最高,机舱必须旋转并与当前风向保持一致。所谓的方位角定位需要同时获取旋转方向和位置。该任务通常由绝对值多圈编码器(图7)通过光感应或磁感应来完成。紧凑的结构、极高的抗冲击和抗振动能力以及极广的工作温度范围,确保绝对值多圈编码器具有长期的可靠性。堡盟提供的拥有专利保护的编码器解决方案可耐受最高500 G的持续冲击影响,并采用电绝缘轴有效防止轴电流的影响。
满足严格的安全要求的堡盟编码器系列包括大批不同机械结构的绝对值和增量式编码器(图8),它们均符合SIL3(IEC 62061)和PLe标准(EN ISO 13849-1)。
锋速达是水帘生产厂家|环保空调生产厂家|屋顶风机厂家|,锋速达承接规划:猪场降温|车间降温|厂房降温|猪场通风|车间通风|厂房通风|屋顶排风机|屋顶排热|厂房通风降温|车间通风降温|通风换气排热降温工程|屋顶风机安装|负压风机安装|水帘安装|环保空调安装|通风设备安装|通风降温设备|通风系统安装案例|通风降温系统|屋顶通风机|屋顶排风系统
相关的主题文章:
1 风机轴承振动超标
风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
1.1 不停炉处理叶片非工作面积灰引起风机振动
这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。
在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。经过研究,提出了一个经实际证明行之有效的处理方法。如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。这样就实现了不停炉而处理风机振动的目的。用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。
1.2 不停炉处理叶片磨损引起的振动
磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。此时处理风机振动的问题一般是在停炉后做动平衡。根据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。
1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离最近,只有200 mm多,人站在风机外面,用手可以进行内部操 作。风机正常运行的情况下手孔门关闭。
2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试加重量。
3)找完平衡后,计算应加的重量和位置,对叶轮进行焊接工作。
在实际工作中,用三点法找动平衡较为简单方便。试加重量的计算公式为
P<=250×A0×G/D(3000/n)2(g)
为了尽快找到应加的重量和位置,应根据平时的数据多总结经验。根据经验,Y4-73-11-22D的风机振动0.10 mm时不平衡重量为2 000 g;M5-29-11-18D的排粉机振动0.10 mm时不平衡重量120 g;轴流ASN2125/1250型引风机振动为0.10 mm时不平衡重量只有80 g左右。为了达到不停炉处理叶片磨损引起的振动问题的目的,平时须加强对风门挡板的维护,减少风门挡板的漏风,在单侧风机停运时能防止热风从停运的送风机处漏出以维持良好的工作环境。
1.3 空预器的腐蚀导致风机振动间断性超标
这种情况通常发生在燃油锅炉上。燃油锅炉引风机前一般没有电除尘,烟、风道较短,空预器的波纹板和定位板由于低温腐蚀,波纹板腐蚀成小薄钢片,小薄钢片随烟气一起直接打击在风机叶片上,一方面造成风机的受迫振动,另一方面一些小薄钢片镶嵌在叶片上,由于叶片的动不平衡使风机振动。这种现象是笔者在长期的实际生产中观察到的结果。处理方法是及时更换腐蚀的波纹板,采用方法防止空预器的低温腐蚀,提高排烟温度和进风温度(一般应高于60℃以避开露点),波纹板也可使用耐腐蚀的考登钢或金属搪瓷。
1.4 风道工程振动导致引风机的振动
烟、风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改变,而一般扩散筒的下部只有4个支点,如图2所示,另一边的接头石棉帆布是软接头,这样一来整个扩散筒的60%重量是悬吊受力。从图中可以看出轴承座的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在扩散筒出口端下面增加一个活支点(如图3),可升可降可移动。当机组负荷变化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况在风道较短的情况下更容易出现。
1.5 动、静部分相碰引起风机振动
在生产实际中引起动、静部分相碰的主要原因:
(1)叶轮和进风口(集流器)不在同一轴线上。
(2)运行时间长后进风口损坏、变形。
(3)叶轮松动使叶轮晃动度大。
(4)轴与轴承松动。
(5)轴承损坏。
(6)主轴弯曲。
根据不同情况采取不同的处理方法。引起风机振动的原因很多,其它如连轴器中心偏差大、基础或机座刚性不够、原动机振动引起等等,有时是多方面的原因造成的结果。实际工作中应认真总结经验,多积累数据,掌握设备的状态,摸清设备劣化的规律,出现问题就能有的放矢地采取相应措施解决。
2 轴承温度高
风机轴承温度异常升高的原因有三类:润滑不良、冷却不够、轴承异常。离心式风机轴承置于风机外,若是由于轴承疲劳磨损出现脱皮、麻坑、间隙增大引起的温度升高,一般可以通过听轴承声音和测量振动等方法来判断,如是润滑不良、冷却不够的原因则是较容易判断的。而轴流风机的轴承集中于轴承箱内,置于进气室的下方,当发生轴承温度高时,由于风机在运行,很难判断是轴承有问题还是润滑、冷却的问题。实际工作中应先从以下几个方面解决问题。
(1)加油是否恰当。应当按照定期工作的要求给轴承箱加油。轴承加油后有时也会出现温度高的情况,主要是加油过多。这时现象为温度持续不断上升,到达某点后(一般在比正常运行温度高10℃~15℃左右)就会维持不变,然后会逐渐下降。
(2)冷却风机小,冷却风量不足。引风机处的烟温在120℃~140℃,轴承箱如果没有有效的冷却,轴承温度会升高。比较简单同时又节约厂用电的解决方法是在轮毂侧轴承设置压缩空气冷却。当温度低时可以不开启压缩空气冷却,温度高时开启压缩空气冷却。
(3)确认不存在上述问题后再检查轴承箱。
3 动叶卡涩
轴流风机动叶调节是通过传动机构带动滑阀改变液压缸两侧油压差实现的。在轴流风机的运行中,有时会出现动叶调节困难或完全不能调节的现象。出现这种现象通常会认为是风机调节油工程故障和轮毂内部调节机构损坏等。但在实际中通常是另外一种原因:在风机动叶片和轮毂之间有一定的空隙以实现动叶角度的调节,但不完全燃烧造成碳垢或灰尘堵塞空隙造成动叶调节困难。动叶卡涩的现象在燃油锅炉和采用水膜除尘的锅炉比较普遍,解决的措施主要有
(1)尽量使燃油或煤燃烧充分,减少碳黑,适当提高排烟温度和进风温度,避免烟气中的硫在空预器中的结露。
(2)在叶轮进口设置蒸汽吹扫管道,当风机停机时对叶轮进行清扫,保持叶轮清洁,蒸汽压力<=0.2MPa,温度<=200℃。
(3)适时调整动叶开度,防止叶片长时间在一个开度造成结垢,风机停运后动叶应间断地在0~55°活动。
(4)经常检查动叶传动机构,适当加润滑油。
4 旋转失速和喘振
旋转失速是气流冲角达到临界值附近时,气流会离开叶片凸面,发生边界层分离从而产生大量区域的涡流造成风机风压下降的现象。喘振是由于风机处在不稳定的工作区运行出现流量、风压大幅度波动的现象。这两种不正常工况是不同的,但是它们又有一定的关系。风机在喘振时一般会产生旋转气流,但旋转失速的发生只决定于叶轮本身结构性能、气流情况等因素,与风烟道工程的容量和形状无关,喘振则风机本身与风烟道都有关系。旋转失速用失速探针来检测,喘振用U形管取样,两者都是压差信号驱动差压开关报警或跳机。但在实际运行中有两种原因使差压开关容易出现误动作:1)烟气中的灰尘堵塞失速探针的测量孔和U形管容易堵塞;2)现场条件振动大。该保护的可靠性较差。由于风机发生旋转失速和喘振时,炉膛风压和风机振动都会发生较大的变化,在风机调试时通过动叶安装角度的改变使风机正常工作点远离风机的不稳定区,随着目前风机设计制造水平的提高,可以将风机跳闸保护中喘振保护取消,改为“发讯”,当出现旋转失速或喘振信号后运行人员通过调节动叶开度使风机脱离旋转脱流区或喘振区而保持风机连续稳定运行,从而减少风机的意外停运。
5 结束语
随着中国风机制造水平的提高,风机的效率和可靠性不断提高,但风机在实际运用中故障的情况仍较多,完善工程
风力发电机不仅曝露于自然环境中,而且必须在最恶劣的条件下绝对可靠地运行。即使在运行20或30年后,人们仍然希望它们能够在任何天气中保持最佳的运行状态,提供最高的经济效益,并具有最短的停机时间。要实现这些目标,需要采用精密的具有安全和性能可靠性的传感器技术。增量式传感器和测速发电机起着主要作用,它们必须同时满足可靠性和耐用性方面的苛刻要求。陆上和海上风力发电机通常都会使用十多个能正确完成任务并耐受极其严酷的环境条件的传感器。
如同风力发电机在尺寸、性能和结构上的有所不同,对其所用传感器的要求也多种多样。如果希望在该市场取得成功,就必须考虑风机制造商和业主在结构、维护和运行方面的不同需求。堡盟广泛的产品系列融合了堡盟丰富的技术知识和多年的专业经验,能充分满足以上要求。堡盟集团运动控制产品部门可为风能行业中的各种应用提供满足当前及未来要求的合适产品(图1a、图1b)。
图1a:十多个编码器和测速发电机在确保风力发电机安全可靠、经济高效和长期稳定地运行方面具有不可忽视的作用
图1b:一站式解决方案:多年以来,堡盟与著名风力发电机制造商密切合作,精心开发定制解决方案。其广泛的产品选择几乎可以满足任何应用要求。
为了确保风力发电机实现顶级性能和最佳效率,必须根据风力、风向调节转子速度。用于监测转速的增量式传感器可直接安装在转子轮毂上或者安装在风力发电机的传动工程上,用以获取当前的转子速度,并将信息传输至主控制器。
绝对值编码器可随时提供转子位置反馈,其最大分辨率为17位,并常常采用并联增量通道来获得冗余速度反馈。更多的高性能产品还包括HDmag系列新型无轴承磁编码器,这些编码器也能精确地完成发电机反馈任务。凭借极其紧凑的结构设计,它们在安装过程中允许较大的轴向和径向容差。用于高度动态应用的无轴承编码器可直接安装在快速旋转的发电机轴上,在20年时间中需完成25,000,000,000多圈。这显然超出了球轴承的能力。最大通孔直径为740 mm的编码器直接安装在轮毂上(图2)。无轴承编码器每转产生500,000多个脉冲,凭借这一高分辨率它们可以精确采集相对较低的转子转速。
图2:最大通孔直径为740 mm的无轴承增量式或绝对值编码器直接安装在转子轮毂上
转子叶片的桨距角是风力发电机发电效率的关键。为了最大限度地利用不同风向的风力,转子叶片的迎风面必须与风向保持一致。由于在断电时绝对值编码器(图3)也能保存位置值,并在冗余发电机重新启动时作为参考循环,因此它们是位置反馈的首选产品。
图3:转子叶片变浆控制:对采用SSI、CANopen或任何其它现场总线接口以及以太网技术的绝对值编码器提出的完美挑战。
用于发电机反馈的编码器
发电机转速是风力发电场运行的重要因素:首先是确保稳定的电网供电,其次是在超过最高转速极限时使风机紧急停止。实践证明,对这些应用而言,增量式编码器是一种可靠的选择。由于超速开关可作为超出速度阈值时的紧急停止触发器(图4),增量式编码器可与之配合使用,在发电场的盈利能力和运行安全方面起着关键作用。
图4:由于超速开关可作为超出速度阈值时的紧急停止触发器,增量式编码器或测速发电机可与之配合使用,在发电场的盈利能力和运行安全方面起着关键作用
图5:例如,HOG 131编码器系列的特点是具有出色的抗振性和极佳的耐候性,是适合在高盐分空气和恶劣海上环境中的应用的完美产品
图6:通过集成的状态监控功能(EMS 增强监测工程)进一步增强安全性:由于潜在错误在定期维护过程中得以消除,从而避免了因传感器故障而造成不可容忍的发电场停机时间
为了最佳地利用主导风以确保风力发电场的发电效率最高,机舱必须旋转并与当前风向保持一致。所谓的方位角定位需要同时获取旋转方向和位置。该任务通常由绝对值多圈编码器(图7)通过光感应或磁感应来完成。紧凑的结构、极高的抗冲击和抗振动能力以及极广的工作温度范围,确保绝对值多圈编码器具有长期的可靠性。堡盟提供的拥有专利保护的编码器解决方案可耐受最高500 G的持续冲击影响,并采用电绝缘轴有效防止轴电流的影响。
图7:精确的机舱运动控制:对于所谓的方位角定位,必须同时获取旋转方向和位置,这通常采用绝对值多圈编码器来完成
满足严格的安全要求的堡盟编码器系列包括大批不同机械结构的绝对值和增量式编码器(图8),它们均符合SIL3(IEC 62061)和PLe标准(EN ISO 13849-1)。
图8:满足严格的安全要求的堡盟编码器系列包括大批不同机械结构的绝对值和增量式编码器(图8),它们均符合SIL3(IEC 62061)和PLe标准(EN ISO 13849-1)
锋速达是水帘生产厂家|环保空调生产厂家|屋顶风机厂家|,锋速达承接规划:猪场降温|车间降温|厂房降温|猪场通风|车间通风|厂房通风|屋顶排风机|屋顶排热|厂房通风降温|车间通风降温|通风换气排热降温工程|屋顶风机安装|负压风机安装|水帘安装|环保空调安装|通风设备安装|通风降温设备|通风系统安装案例|通风降温系统|屋顶通风机|屋顶排风系统
相关的主题文章:
推荐案例